Hilbert Polynomial of a Certain Ladder-Determinantal Ideal

نویسنده

  • DEVADATTA M. KULKARNI
چکیده

A ladder-shaped array is a subset of a rectangular array which looks like a Ferrers diagram corresponding to a partition of a positive integer. The ideals generated by the p-by-p minors of a ladder-type array of indeterminates in the corresponding polynomial ring have been shown to be hilbertian (i.e., their Hilbert functions coincide with Hilbert polynomials for all nonnegative integers) by Abhyankar and Kulkarni [3, p 53-76]. We exhibit here an explicit expression for the Hilbert polynomial of the ideal generated by the two-by-two minors of a ladder-type array of indeterminates in the corresponding polynomial ring. Counting the number of paths in the corresponding rectangular array having a fixed number of "turning points" above the path corresponding to the ladder is an essential ingredient of the combinatorial construction of the Hilbert polynomial. This gives a constructive proof of the hilbertianness of the ideal generated by the two-by-two minors of a ladder-type array of indeterminates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A determinantal formula for the Hilbert series of one-sided ladder determinantal rings

We give a formula that expresses the Hilbert series of one-sided ladder determinantal rings, up to a trivial factor, in form of a determinant. This allows the convenient computation of these Hilbert series. The formula follows from a determinantal formula for a generating function for families of nonintersecting lattice paths that stay inside a one-sided ladder-shaped region, in which the paths...

متن کامل

A Remarkable Formula for Counting Nonintersecting Lattice Paths in a Ladder with Respect to Turns

We prove a formula, conjectured by Conca and Herzog, for the number of all families of nonintersecting lattice paths with certain starting and end points in a region that is bounded by an upper ladder. Thus we are able to compute explicitly the Hilbert series for certain one-sided ladder determinantal rings.

متن کامل

Gröbner Geometry of Schubert Polynomials 1247

Given a permutation w ∈ Sn, we consider a determinantal ideal Iw whose generators are certain minors in the generic n × n matrix (filled with independent variables). Using ‘multidegrees’ as simple algebraic substitutes for torus-equivariant cohomology classes on vector spaces, our main theorems describe, for each ideal Iw: • variously graded multidegrees and Hilbert series in terms of ordinary ...

متن کامل

Topics on the Ratliff-Rush Closure of an Ideal

Introduction Let  be a Noetherian ring with unity and    be a regular ideal of , that is,  contains a nonzerodivisor. Let . Then . The :union: of this family, , is an interesting ideal first studied by Ratliff and Rush in [15]. ‎  The Ratliff-Rush closure of  ‎ is defined by‎ . ‎ A regular ideal  for which ‎‎ is called Ratliff-Rush ideal.‎‏‎ ‎ The present paper, reviews some of the known prop...

متن کامل

Gröbner geometry of Schubert polynomials

Schubert polynomials, which a priori represent cohomology classes of Schubert varieties in the flag manifold, also represent torus-equivariant cohomology classes of certain determinantal loci in the vector space of n×n complex matrices. Our central result is that the minors defining these “matrix Schubert varieties” are Gröbner bases for any antidiagonal term order. The Schubert polynomials are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003